
EveScript
Release 0.5.0

Charlee Li

Mar 30, 2021

CONTENTS

1 Overview 1
1.1 Installation . 1

2 Installation 3

3 Usage 5
3.1 Write a Script . 5
3.2 Compile a Script . 6
3.3 Run a Script . 6
3.4 Decompile a Script . 6

4 Reference 9
4.1 EveScript Language Reference . 9

5 Contributing 15
5.1 Bug reports . 15
5.2 Documentation improvements . 15
5.3 Feature requests and feedback . 15
5.4 Development . 16

6 Authors 17

7 Changelog 19
7.1 0.5.0 (2021-03-29) . 19
7.2 0.4.0 (2021-03-27) . 19
7.3 0.3.0 (2021-03-20) . 19
7.4 0.2.1 (2021-03-20) . 19
7.5 0.1.1 (2021-03-19) . 19

8 Indices and tables 21

i

ii

CHAPTER

ONE

OVERVIEW

EveScript is a simple script language for event-based automation tasks.

from evescript.compiler import EveScriptCompiler
from evescript.executor import EveScriptExecutor

script = '''
if ($lightSensor > 20) {

say("It's daytime now!")
}
'''

def lightSensor():
return read_light_sensor_port()

compiler = EveScriptCompiler()
compiled_script = compiler.compile(script)

executor = EveScriptExecutor({
'actions': { 'say': lambda x: print(x) },
'variables': { '$lightSensor': lightSensor },

})

executor.run_script(compiled_script)
Out: It's daytime now!

EveScript allows you to write simple event-based scripts that evaluate various conditions and execute actions. The
conditions and actions are highly customizable to maximize the flexibility. EveScript can be used in embedded systems
(such as Raspberry Pi) to implement a flexible event-based system.

1.1 Installation

pip install evescript

1

EveScript, Release 0.5.0

2 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

At the command line:

pip install evescript

3

EveScript, Release 0.5.0

4 Chapter 2. Installation

CHAPTER

THREE

USAGE

EveScript consists of a compiler EveScriptCompiler and an executor EveScriptExecutor.

3.1 Write a Script

An EveScript is written in the following form:

if (expression) {
action1(...)
action2(...)

}

where, the expression is a bool expression, and the actions are a list of “function” calls. The condition expression
consists of variables, operators and constants (strings, numbers, and booleans).

Actions, variables, and operators are three types of entities that must be provided before the script can execute.

Here is a quick example (quickstart.es) for you to start script with EveScript.

if ($lightSensor < 20) {
say("It's getting dark now!")

}

In this script, we used three entities that need to be provided when executing.

• $lightSensor: This is a variable. A variable is a custom function that is provided as a data source to the
script.

• say: This is an action. An action is a custom function that will be called when the expression is true.

We will provide these entities in the Run a script section.

For more details, see EveScript Language Reference.

5

EveScript, Release 0.5.0

3.2 Compile a Script

An EveScript file (*.es) needs to be compiled before executed. This is done by calling the compile() method in
the EveScriptCompiler class.

from evescript.compiler import EveScriptCompiler

with open('quickstart.es') as f:
script = f.read()

compiler = EveScriptCompiler()
compiled_script = compiler.compile(f)

3.3 Run a Script

The compiled script can be executed with EveScriptExecutor. When instancing EveScriptExecutor, the
entities (actions, operators, and variables) used in the scripts must be provided. Each entity is a function or lambda.

from evescript.executor import EveScriptExecutor

ACTIONS = {
'say': lambda s: print(s),

}

VARIABLES = {
'$lightSensor': lambda x: 10,

}

Provide the actions and the variables used in the script
executor = EveScriptExecutor({
'actions': ACTIONS,
'variables': VARIABLES,

})

run the first trigger
executor.run_script(compiled_script)

Since we mocked the varialbe $lightSensor to make it always returns 10, the action will be executed and will
print It's getting dark now!.

3.4 Decompile a Script

Sometimes it is necessary to retrieve the script source for given compiled script. This can be done with
EveScriptDecompiler. It provides a decompile method that takes a compiled script and returns the origi-
nal script text.

NOTE: The decompiled script may not be identical to the original script - the whitespaces, new lines may differ, and
the decompiled script will not contain any comments that may have appeared in the original script.

The following snippet shows how to decompile:

6 Chapter 3. Usage

EveScript, Release 0.5.0

import os
import sys

from evescript.compiler import EveScriptCompiler
from evescript.decompiler import EveScriptDecompiler

script = '''
if ($lightSensor < 20) {

say("It's getting dark now!")
}
'''

compiler = EveScriptCompiler()
compiled_script = compiler.compile(script)

decompiler = EveScriptDecompiler()
decompiled_script = decompiler.decompile(compiled_script)

print(decompiled_script)

3.4. Decompile a Script 7

EveScript, Release 0.5.0

8 Chapter 3. Usage

CHAPTER

FOUR

REFERENCE

4.1 EveScript Language Reference

4.1.1 Basic Syntax

The basic form of an EveScript is as follows:

if statement
if (expression) {

action1(...)
action2(...)

}

if (expression) {
...

}

call action directly
action3()

An exmaple script may look like this:

if ($currentTime matchCron "0 0 * * *" && $lightSensor > 20 || $lightSensor < 10) {
say("Only run on midnight 00:00")
play("music.mp3")

}

another condition
if ($currentTime matchCron "* * * * *") {

say("run every minute")
say(true)

}

In the above script, $currentTime, $lightSensor are called variables. They are the data sources of this script.
And the matchCron, >, ||, < are operators, where matchCron is a custom operator, while others are built-in
operators. And the say, play are actions.

The if statement can be nested too.

nested if
if (expr1) {

if (expr2) {
action()

(continues on next page)

9

EveScript, Release 0.5.0

(continued from previous page)

}
}

You can also use if. . . else statement.

if else statement
if (expr1) {

action1()
} else if (expr2) {

action2()
} else {

action3()
}

The following figure shows how a script is compiled and executed.

All variables, actions, and custom operators must be provided when executing this script. See Actions, Operators, and
Variables for details.

4.1.2 Literals

EveScript supports the following types for literals:

• Numbers: Only integers (3, 10, -4) and decimals (0.6, -2.4) are supported. Scientific notation such as 3e10
is NOT supported.

• String: A string must be quoted with double quotation marks: "Hello, world". Single quotation mark is
not supported.

• Boolean: true or false.

10 Chapter 4. Reference

EveScript, Release 0.5.0

4.1.3 Statements

Statements are similar to the if statements in other languages. It uses the C-style:

• criteria must be placed in parenthesis

• use { } around the code block (i.e. actions)

4.1.4 Variables

Variables are part of the expressions in the statement. When creating a EveScriptExecutor, variables must be
provided so that they can be used in the script.

Contrast to the usual concept of “variable” in other languages, variables in EveScript are NOT memory units for
storing values. They are more like small functions that act as data sources, such as reading data from hardware I/O
ports, reading the system clock, or fetching data from Internet.

When creating an executor, provide a dict as the variables field of config, in which keys are the variable names and
the values are the functions that provide data. The functions must take no parameters, and return a number, a string,
or a boolean value.

The following code shows how to create a variable:

Python code
def lightSensor():
read the sensor value from the light sensor
return read_value_from_light_sensor()

the key of the dict is the name of the variable
variables = {

'$lightSensor': lightSensor,
}

executor = EveScriptExecutor({
'variables': variables,
'actions': {},
'operators': {},

})

With this definition, the variable $lightSensor is useable in the script.

EveScript code
if ($lightSensor > 10) {

...
}

4.1.5 Operators

EveScript provides some built-in operators in order to construct expressions.

4.1. EveScript Language Reference 11

EveScript, Release 0.5.0

Operator Description
|| logical OR
&& logical AND
! logical NOT
== equal to
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

However, you can also define custom operators to implement your own logical operations. Similar to variables,
custom operators are also small functions or lambdas that take two parameters (i.e. custom operators must be binary
operators), and return a boolean value.

The following code snippet demonstrates how to create and use a custom operator:

Python code
from datetime import datetime
from croniter import croniter

def matchCron(t, cron):
"""An operator that matches the provided time `t` with the `cron` string."""
return croniter.match(cron, t)

def currentTime():
"""A variable that returns current system time."""
return datetime.now()

executor = EveScriptExecutor({
'variables': { '$currentTime': currentTime },
'operators': { 'matchCron': matchCron },
'actions': {},

})

With this definition, $currentTime and matchCron can be used in the code to implement a crontab-like trigger:

EveScript code
if ($currentTime matchCron "0 0 * * *") {

...
}

The following table lists the precedence of operators.

Precedence Operators
1 !
2 <, <=, >, >=, ==, !=, all custom operators
3 &&
4 ||

12 Chapter 4. Reference

EveScript, Release 0.5.0

4.1.6 Actions

Actions are the functions listedn in the { } block. They must be defined and provided when instantiating the
EveScriptExecutor.

An action function can take zero or more parameters, and has no return value.

Note there is no semicolon ; at the end of each action.

The following code snippet shows how to define an action:

Python code
def lightSensor():
read the sensor value from the light sensor
return read_value_from_light_sensor()

def say(text):
"""Define an action `say` that prints a message on the console."""
print(text)

the key of the dict is the name of the variable
variables = {

'$lightSensor': lightSensor,
}

executor = EveScriptExecutor({
'variables': { '$lightSensor': lightSensor },
'actions': { 'say': say },
'operators': {},

})

With this definition, say(text) can be called in the scripts:

EveScript code
if ($lightSensor > 10) {

say("It's daytime now!")
}

4.1.7 EBNF Definition

<script> ::= { <statement> }

<block> ::= "{" { <statement> } "}"
| <statement>

<statement> ::= <if_statement>
| <action>

<if_statement> ::= "if" "(" <expr> ")" <block> ["else" <block>]

<expr> ::= <term> "||" <expr>
| <term>

<term> ::= <factor> "&&" <term>
| <factor>

<factor> ::= "(" <expr> ")

(continues on next page)

4.1. EveScript Language Reference 13

EveScript, Release 0.5.0

(continued from previous page)

| "!" <factor>
| <predicate>

<predicate> ::= <operand> <operator> <operand>
| <boolean>

<operator> ::= ">"
| ">="
| "<"
| "<="
| "=="
| "!="
| keyword

<operand> ::= variable
| <const>

<const> ::= string
| number
| <boolean>

<boolean> ::= 'true'
| 'false'

<action> ::= keyword "(" <params> ")"

<params> ::= <param> { "," <param> }
| empty

<param> ::= <operand>

14 Chapter 4. Reference

CHAPTER

FIVE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.2 Documentation improvements

EveScript could always use more documentation, whether as part of the official EveScript docs, in docstrings, or even
on the web in blog posts, articles, and such.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/charlee/evescript/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

15

https://github.com/charlee/evescript/issues
https://github.com/charlee/evescript/issues

EveScript, Release 0.5.0

5.4 Development

To set up evescript for local development:

1. Fork evescript (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/evescript.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes run all the checks and docs builder with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

5.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

5.4.2 Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel:

tox -p auto

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though . . .

16 Chapter 5. Contributing

https://github.com/charlee/evescript
https://tox.readthedocs.io/en/latest/install.html
https://travis-ci.com/github/charlee/evescript/pull_requests

CHAPTER

SIX

AUTHORS

• Charlee Li - https://charlee.li

17

https://charlee.li

EveScript, Release 0.5.0

18 Chapter 6. Authors

CHAPTER

SEVEN

CHANGELOG

7.1 0.5.0 (2021-03-29)

• Support if. . . else statement.

• Support executing actions outside if statement.

• Support nested if statement.

• Support actions with no params.

7.2 0.4.0 (2021-03-27)

• Added support for using true/false as conditions.

7.3 0.3.0 (2021-03-20)

• Fixed typo (EveScriptExector => EveScriptExecutor)

7.4 0.2.1 (2021-03-20)

• Added decompiler.

• Compiler will not rename built-in operators.

7.5 0.1.1 (2021-03-19)

• First release on PyPI.

19

EveScript, Release 0.5.0

20 Chapter 7. Changelog

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

21

	Overview
	Installation

	Installation
	Usage
	Write a Script
	Compile a Script
	Run a Script
	Decompile a Script

	Reference
	EveScript Language Reference

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	0.5.0 (2021-03-29)
	0.4.0 (2021-03-27)
	0.3.0 (2021-03-20)
	0.2.1 (2021-03-20)
	0.1.1 (2021-03-19)

	Indices and tables

